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Abstract: The so-called Greenwood statistic, based on the sum of squares of the sample spacings, 
is known to be locally most powerful (LMP) among all tests based symmetrically on the sample 
spacings. On the other hand, the Z 2 criterion with the number of cells equal to the number of 
observations, is also known to be LMP among tests based symmetrically on the observed frequen- 
cies. While the latter compares the observed and expected frequencies holding the expected 
number in each cell to one, the former compares the expected and observed cell-lengths holding 
the observed number in each cell to one. We compare here these two test statistics with still an- 
other spacings test, ~ D i log Di, on the basis of their asymptotic relative efficiency and conclude 
that the Greenwood statistic is superior. 
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1. Introduction 

Let X1, . . . ,  Xn_ 1 be independent random variables with a common distribution 
F. The goodness-of-fit problem is to test the hypothesis that F is equal to a specified 
distribution. A simple probability integral transformation on the random variables 
permits us to equate the specified distribution to the uniform distribution on [0, 1]. 
Thus, from now on, we shall assume that this reduction has been effected and under 
the hypothesis, the observations have a uniform distribution on [0, 1]. 

Let 0_< X~ _<-.- _< X~_ 1 -< 1 be the order statistics. The sample spacings (DI, . . . ,  Dn) 
are defined by 

D i = X f - X ~ _  1, i= 1, . . . , n ,  (1.1) 
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where we put X~ = 0 and X~ = 1. Clearly the support of the distribution must be 
[0, 1] in order that this definition of the sample spacings is meaningful. Tests of the 
goodness-of-fit problem based on the normalized spacings {nDi; i= 1, ..., n} have 
been proposed by several authors. See, for instance, Pyke (1965), Kale (1969), 
Sethuraman and Rao (1970), and Rao and Sethuraman (1975). More common 
among these are tests based symmetrically on spacings, namely, of the form 

Tn =1 ~ h(nDi), (1.2) 
n i = 1  

where, for instance, we may take h(x)-x  r (r> -½), ½Ix-1[, and logx. To com- 
pute the Pitman asymptotic relative efficiencies (ARE's) of various tests of the form 
(1.2), Sethuraman and Rao (1970) consider a sequence of alternative distributions 
with densities [see also Cibisov (1961), Weiss (1965)] 

l(x) 
fn(x)= 1 + n6, 0_<x_< 1, ~>¼, (1.3) 

converging to the density of the uniform distribution on [0, 1], 

H0: f(x)= 1, 0_x_<l,  (1.4) 

under the hypothesis. Here l(. ) is assumed to be square integrable and continuously 
differentiable on [0, 1]. Sethuraman and Rao (1970) demonstrate that the symmetric 
spacings tests cannot discriminate alternatives (1.3) if d>¼ so that comparison of 
the ARE's must be made for a sequence of alternatives 

l(x) 
An: fn(x)=l+nl--- ~, 0_<x_<l, (1.5) 

converging to the hypothesis (1.4) at the rate of n-1/4. They also demonstrate that 
among a wide class of such tests, the Greenwood test statistic, namely, 

V2(n) = l  ~] (nDi) 2, (1.6) 
/ ' /  i = ,  

has maximum efficacy [see also Kuo and Rao (1984)]. In this paper, we also consider 
the spacings test based on the entropy 

/7 

1 ~ (nDi) log (nDi) (1.7) 

and establish its asymptotic normality both under the hypothesis (1.4) and the alter- 
natives (1.5) using the results of Sethuraman and Rao (1970). The asymptotic local 
power of E,, under the alternatives (1.5) has also been discussed by Gebert and Kale 
(1969) who use results of Weiss (1965). But the technique used by Weiss (1965), 
namely, substituting the spacings under the alternatives by uniform spacings with 
the scaling factor fn[F£l(i/n + 1)], is questionable in view of Pyke (1965, p. 417). 
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Thus, our results for En, while may be derived from those of Gebert and Kale 
(1969), use a different and a simpler approach and are on firm ground. 

The third statistic we discuss is the usual Z2-statistic with number of cells equal 
to the number of observations, i.e., with cell expectations of one each. This 
X2-statistic is thus 

n- l  

Sn= ~ (Oi-1)  2, (1.8) 
i=1 

where Oi is the observed frequency in the i-th cell, viz., [ ( i - 1 ) / ( n - 1 ) ,  i / ( n -  1)), 
i=  1, ..., n - 1 .  It is of interest to compare this with the Greenwood test Vz(n) in 
(1.6) since the latter, written in the equivalent form 

may be thought of being analogous to (1.8). While the chi-square criterion S,, in 
(1.8) compares the observed and expected frequencies holding the expected frequen- 
cies in each cell to one, the Greenwood test in the form (1.9) compares the expected 
and observed cell-lengths holding the observed frequency in each cell to one. Under 
the alternatives (1.5), the asymptotic normality of these statistics is proved in Sec- 
tion 2 and the comparisons of asymptotic efficiencies are made in Section 3. 

2. Asymptotic normality of En, V2(n) and S~ 

The limiting distribution of various spacings statistics of the form (1.2) have been 
derived by Rao and Sethuraman (1975) both under the hypothesis and the alter- 
natives using the ideas of the weak convergence of the empirical process of the nor- 
malized spacings. We state two results from this paper that we use to derive the 
limiting distribution of En. 

Define the empirical distribution of the normalized spacings {nDi; i - -  1, . . . ,  n} by 

Hn(x)= 1 ~ I(nDi;x), x>_O, 
n i = l  

where I(z;x) is 1 if z<_x and 0 if z>x .  
Let 

Gn(x)= 1 - e - X ) +  1 

Then we have: 

(2.1) 

12(t) d t )  e -X(x-  I X 2 )  

if 6>  1 ¥,  

i f O =  1 ~-. 
(2.2) 

Theorem 2.1 (Sethuraman and Rao (I 970), Rao and Sethuraman (1975)). Under the 
alternatives (1.3), the sequence o f  stochastic processes { an (x) = x/-n(Hn (x) - Gn (x)), 
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x_> 0} converges weakly to the Gaussian process {Q(x), x_> 0} in D[0, oo] with mean 
function zero and covariance kernel 

K(x , y )=e -Y (1 -e -X-xye -X) ,  O<_x<y<_ oo. (2.3) 

This theorem on the empirical distribution of the normalized spacings forms the 
basic result for deriving the asymptotic distributions of test statistics of the form 
(1.2). 

If h(. ) is a function such that for y~D[O, oo], the mapping y__,~o h(x) dy(x) is 
continuous with probability one under Q, then 

can be considered as a continuous functional of the proces Pn, and we have, as a 
consequence of the invariance principle: 

Theorem 2.2 (Sethuraman and Rao (1970), Rao and Sethuraman (1975)). Under the 
sequence o f  alternatives (1.3), the random variable 

T* = x/-n ( T n -  f ;  h(x) dGn(x) ) (2.5) 

has a limiting normal distribution with mean zero and variance 

a 2 = h'(x)h'(y)K(x, y) dx dy. (2.6) 
o 

As a consequence of this theorem, the following two results on the distribution 
of E~ and VE(n) follow: 

Theorem 2.3. Under the sequence of  alternatives (1.5) the random variable 

E*-- V'-n(En - /an) 

has a limiting normal distribution with mean zero and variance ({x 2 
is given by 

/~n =(1 - y ) + ~ n  12(t)dt 

and y is Euler's constant. 

(2.7) 

- 3) where t~n 

(2.8) 

Proof.  Observe that En may be written as 

lo  g(x) dHn(x), (2.9) En= 

where g(x)=x log x. The sufficient conditions (1) through (18) of Sethuraman and 
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Rao (1970, p. 410) are easily verified for the function g(x)=x log x. Thus the map 
y(x)~Jog(x)dy(x) for y(x)~D[O, oo] is continuous with probability one under 
{p(x), 0_<x<_oo}, and Theorem 2.2 applies. Further,/z n is given by 

S lun= g(x) dan(x) 
0 

S =g(0) + g'(x)[1- Gn(x)] dx 
0 

= f~ (l+logx)Ie-X-(-~n fil2(t)dt)e-X(x-½x2)ldx 

Also, a 2 is given by 

a2= fl  (l+l°gx)(l+l°gy)e-Y(1-e-X-xye-X)dxdy 
O<x~_y<_¢~ 

+ ,ll (l+l°gx)(l+l°gy)e-X(1-e-Y-xye-Y)dxdy 
O<_y<_x<_ oo 

I If 1 = (1 + logx)  (1 + logy)e  -y dy dx 
0 x 

- (1 +log x) (1 +logy)e-Ydy dx 

+I~(l+logx)e-X[l](l+logx)dyldx 

- (1 +logx)e  -x (1 +logy)e -y dy dx 

= - 3 - 2 t , 2 + 2  e-XlogExdx 
0 

= } n 2 - 3 ,  

since (see, for example, Ryshik and Gradstein (1957), p. 197) 

e -x log2 x dx = y2 + ~-n . 

As a corollary we have: 

Corollary 2.4 (cf. Gebert and Kale (1969)). Under the hypothesis (1.4), the random 
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variable v % { E ~ - ( 1 -  y)} has a limiting normal distribution with mean zero and 
variance 1 7 ~ 2  - -  3. 

A similar result about V2(n), corresponding to h(x )=x  2 in (1.2), was discussed 
by Sethuraman and Rao (1970) (see also Kuo and Rao (1984)) and we state: 

Theorem 2.5 (Sethuraman and Rao (1970), Kuo and Rao (1984)). Under the se- 
quence o f  alternatives (1.5), the random variable 

has a limiting normal distribution with mean zero and variance 4. 

Finally, we consider the asymptotic distribution of the chi-square test S, in (1.8) 
under the alternatives (1.5). For this, we make use of Theorem 2.1 of Hoist and Rao 
(1980, p. 25) on the asymptotic distribution of statistics based on multinomial fre- 
quencies. We state this result for completeness, in the present notations. This 
theorem is not a special case of Theorem 2 of Holst (1979) as stated there, but rather 
a straightforward extension to the non-identically distributed case. 

Let (0In, ..., 0 ,~)  be Mult(n; ply, . . . , p , , ) .  We are interested in the asymptotic 
distribution of 

n 

W~ = ~ hk (O,n) as n---, oo. (2.10) 
k = l  

where {hk; k =  1,.. . ,n} is a sequence of real-valued Borel-measurable functions. 
Let { ( l , , . - . , (n ,} ,  n>__ I, be a triangular array of independent Poisson random 
variables where ~k,~ is Pois(npk~). Define 

and let 

n 

h,(¢,,) (2.11) 
k = l  

vn=E(2 , )  and o" n*2=var(2.). (2.12) 

For 0 < q < 1, let N =  [nq], the integer part of (nq), and 

N 

~.,,q= ]~ hk(~jc,). (2.13) 
k = l  

Theorem 2.6 (Theorem 2.1 of Hoist and Rao (1980)). Let An, vn, an and )~nq be as 
defined in (2.11), (2.12) and (2.13). Assume that there exists a q0< 1 such that for  

N q>-qo, Y.k=~Pkn~Pq, 0 < P q < l ,  and suppose 

Inn-1/~Anq-E)'nq ) ~ d B# 
-1,2 k~=, (,kn_nPkn) ~ 'N( (0)  ' (An: . p q ) )  
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where Aq~A1, Bq--*B 1 and Pq--*l as q~ l  -0 .  Then as n~oo, 

rt-l/2(Wn-Vn) , N(0, A 1 - B~z). 

Since n---,~, we shall write n instead of n -  1 and the Xz-statistic (1.8) is 

t /  / I  

S n - "  2 ( O i n - - 1 )  2 : 2 0 i 2 n  - l l "  
i=l i=1 

In our case, 

(2.14) 

pkn=Probabilityofthek-thcell, namely, [ k n l  k ) ,  

= JJ,k/"-,/,f'(x)dx= In 1-~ n ] - ~ j  (2.15) 

under the alternatives (1.5). 
We define 

n 

An = ~ ~ , - n  (2.16) 
k=! 

where (~,,, ..., ~k,,) are independent Pois(nPk,) as stated earlier. Now, it can be 
verified using the appropriate moments of the Poisson random variables that 

[ vn = E ( 2 , ) =  1 -~ 1/4 
k=l n 

and 

1 V a r ( ~  ,~n)=llq (2.18) Aq = .-~=lim ~ k=l 

and 

B q = l i m - - C o v  ~ 2 , E  ~,n = 3 q .  (2.19) 
. ~ N  \k=l k=I 

The joint asymptotic normality required in Theorem 2.6 is established if we verify 
for any real a, that the triangular sequence 

{ Ykn =a~ 2 + ~kn; k= 1, ..., n} (2.20) 

satisfies, for instance, Liapounov's condition (see Chung (1968), p. 200). 
We need to show that 

Z E]Ykn[ 3 Vat Y,,, (2.21) 
k=l 1 

B~'iot,~.ek 

.,. - .t:i~y.~;~) 
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goes to zero as N~oo.  Since n - l V a r ( ~ = l  Ykn) has finite, non-zero limit, it 
follows that Var( N ~,k=l Ykn) is O(x/--N). It is easily checked that the numerator in 
(2.21) is of order N so that the ratio in (2.21) goes to zero as N~oo.  

Thus from Theorem 2.6 we have: 

Theorem 2.7. Under the alternatives (1.5), the random variable n-1/2(S n - v n )  has 
a normal distribution with mean zero and variance (A1-  B 2) = 1 1 -  32= 2. 

Under the hypothesis (1.4) the asymptotic distribution of Sn in (2.15) is immedia- 

tely given by the following: 

Corollary 2.8. Under the hypothesis (1.4), the random variable n -  1 / 2 ( S  n - n )  has a 
limiting normal distribution with mean zero and variance 2. 

3. Pitman asymptotic relative efficiency of En, V2(n ) and Sn 

The Pi tman asymptotic relative efficiency (ARE) of a test relative to another test 
is defined to be the limit of the inverse ratio of sample sizes required to obtain the 
same limiting power at a sequence of alternatives converging to the hypothesis. The 
limiting power should be a value between the limiting test size, a, and the maximum 
power, 1. If the limiting power of a test at a sequence of alternatives is a, then its 
ARE with respect to any other test with the same test size and with limiting power 
greater than a, is zero. On the other hand, if the limiting power of a test at a se- 
quence of alternatives converges to a number in the open interval (a, 1), then a 
measure of rate of convergence, called efficacy, can be computed. Under certain 
standard regularity assumptions (see, for example, Fraser (1957)), which include a 
condition about the nature of the alternative, asymptotic normal distribution of the 
test statistic under the sequence o f  alternatives, etc., this efficacy is given by 

/z 4 
efficacy = tr 4" (3.1) 

Here p and tr 2 are the mean and variance of the limiting normal distribution under 
the sequence of alternatives when the test statistic has been normalized to have a 
limiting standard normal distribution under the hypothesis. In such a situation, the 
ARE of  one test with respect to another is simply the ratio of their efficacies. 

The efficacy of the test statistic E,, from Theorem 2.3 is 

eff(En) = ( I  I 12( t )d t )4 /16(~Tt2-3)  2. (3.2) 

The efficacy of the test statistic VE(n) can be computed from Theorem 2.5 and we 
obtain 
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( I f ) 4 /  eff(V2(n)) = 12(t) d t  16. 

Finally, the efficacy of the test statistic Sn from Theorem 2.7 is 

eff(Sn)=(l]12(t)dt)4/4. 

(3.3) 

(3.4) 

Since the efficacies in (3.2), (3.3) and (3.4) depend on the alternatives only through 
the multiplying constant, (~tol2(t)dt) 4, we define the 'modified efficacies' of E,,, 
V2(n) and Sn by the ratio of their efficacies to (~0 12(t) dt)  4- Thus from (3.2), (3.3) 
and (3.4), it follows that the test statistic E ,  is 75°70 as efficient as V2(n), and the 
test statistic Sn is 25070 as efficient as V2(n). 

Remark 3.1. We can compare the ARE's  of the test statistics E,, and S,, with the 
test statistic 

Vr(n)= 1 ~ (nDi) r, r>_O. (3.5) 1"/ i=1 

The efficacy of Vr(n) can be computed from the expression (see Sethuraman and 
Rao (1970), p. 411, eqn. 21) 

eff(Tn)=(~o 12(t) dt)4(I~ h'(x)e-X(x-½x 2) dx) 4 
{~o Io h' (x)h' (y)K(x, y) dx dy} z (3.6) 

by substituting h(x)=x r r>_O, where Tn is given by (1.2). After simplification, we 
have 

eff(Vr(n))= {r(1 -r)}4(I~lZ(t)dt) 4 r>_O. (3.7) 
16{/"(2r+ l)/F2(r+ 1 ) -  (1 + r2)} z" 

The Pitman ARE of E ,  with respect to Vr(n) is 

ARE(En, Vr(n))= {F(2r + 1)/F2(r+ 1) - (1  +r2)} 2 r > 0 .  (3.8) 
{r(l_r)}4(_~n2_3)2 ' 

Note that the ARE in (3.8) is independent of the alternatives. Similarly, the ARE 
of Sn with respect to VAn) is 

ARE(S,,  V~(n))- {/ ' (2r  + 1)/F2(r+ 1) -  (1 +r2)} 2 (3.9) 
4{r(1 - r ) }  4 

On the basis of some preliminary computations not only V2(n) but Vr(n) for r in 
the range [1.1, 3.19] seems to be preferable to En. 
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